
2 2 .  A P P E N D I X  J .  R E F E R E N C E  S E D I M E N T  M O T I O N  

22-1 

 

22. Appendix J. Reference Sediment Motion 
The reference condition that is most commonly used is where the non-
dimensional transport rate, W*, is equal to 0.002 (Parker, 1990). 
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where s = relative specific density, g = acceleration of gravity, qs = sediment 
transport rate, ρs = sediment density, τg = grain shear stress, ρ = water density. 
The transport rate, qs, is primarily dependent upon the Shield’s number, θ: 
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where θ  = dimensionless Shield’s number; τg = grain shear stress; γ  = specific 
weight of water; s =  relative specific density of sediment; and D50 = mean 
sediment size. The Shields number that gives W* = 0.002 is termed the reference 
Shield’s stress (θr). It can be described as the condition when many particles are 
moving and there is a small, but measureable, sediment transport rate. In our 
analysis, it corresponds to a Shields number of 0.0386. 

The total shear stress can be separated into grain shear stress and form drag. Grain 
shear stress is commonly understood to be responsible for bedload transport and 
the shear stress due to form drag is commonly ignored. The channel grain shear 
stress τ g is calculated as  
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where R′ = channel hydraulic radius due to grain shear stress; and S = friction 
slope. The total shear stress is partitioned into that due to form drag and that due 
to grain roughness. Manning’s equation is valid for the channel hydraulic radius 
due to grain shear stress: 
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where Cm = 1.0 for SI units, and 1.486 for English units, or ( )3
1

81.9gCm = , and 
R′  is the hydraulic radius due to grain shear stress . Dividing this equation by the 
Manning’s equation gives: 
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where R is the total hydraulic radius and n is the total Manning’s roughness 
coefficient. The Manning’s roughness coefficient for the bed grains, ng, can be 
computed from the roughness height. First, the logarithmic velocity distribution is 
integrated over the depth to yield (López and Barragán, 2008): 
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where κ is the von Karman constant (0.4), u* is the shear velocity, and the log-law 
constant has assumed to be 6. Eq (5) can be approximately fit by the power law 
relation: 
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where kBs B is a representative roughness height. Parker (1991) also used Eq  (6) to 
approximate the roughness coefficient in gravel bed streams. The fit is best for 
R/ks values between 5 and 200, which is the value most natural rivers will fall 
into. The error associated in predicting Manning’s n values with this 
approximation is less than 3%.  

 

 

Figure 22-1. Comparison between Eq. 5 and 6. Also shown on the figure is the 
comparison between assuming ks = 240 mm. 

The Manning’s roughness coefficient due to grain shear, ng, can then be computed 
from the roughness height using the following dimensionally consistent formula:  
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Several different relations in alluvial rivers have been proposed for ks ranging 
from  0.95 D50 (Federal Highway Administration, 1975)  to 3 DB90 (van Rijn, 
1982). A more recent publication, López and Barragán (2008), suggests that 
2.4D90, 2.8D84, and 6.1D50 all give equivalent predictions of Manning’s 
Roughness coefficient for river beds with gravel size or larger sediment, with a 
nonsinuous alignment and a flow path free of vegetation or obstacles. In their 
publication, they use the log law approximation (5) to compute Manning’s n, but 
as shown above, the error associated with using the power fit approximation (6) is 
less than 3 %. 

 


